Effects of Supercritical CO2 Fluids on Pore Morphology of Coal: Implications for CO2 Geological Sequestration

通过Wendy Huang

Effects of Supercritical CO2 Fluids on Pore Morphology of Coal: Implications for CO2 Geological Sequestration

Kaizhong Zhang,Yuanping Cheng,Jin Kan,Guo Haijun,Liu Qingquan, Dong Jun,Li Wei

Highlights

1.The compounds with weakly polar functional groups significantly decreased after SC-CO2 treatment.

2.The pore development degree of high rank and medium rank coals were significantly altered by SC-CO2.

3.The development of seepage-flow pores were promoted by SC-CO2, improving the seepage characteristics of coal seam.

Abstract:A systematic knowledge of the pore morphology of coal treated with supercritical CO2 (ScCO2) is critical for the process of CO, geological sequestration. To better understand the desorption mechanism and to evaluate the storage capacity of target coal seams, the changes in pore volume, pore size distribution, fractal dimension, pore shape, and connectivity in high-, middle-, and low-rank coals were analyzed using N-2/CO2 adsorption and mercury intrusion porosimetry. The results indicate that micropores of high- and middle-rank coals decreased after ScCO2 treatment, whereas an increasing trend was found in low rank coals, and ScCO2 promoted the accessibility of the macropore spaces for all coals. With ScCO2 treatment, the roughness of smaller pores in both high- and middle-rank coals decreased, whereas larger pores became more complex for high-rank coals. Although no significant change was observed in the pore shapes, ScCO2 facilitated the development of effective pore spaces and improved the connectivity of the pore system. Additionally, the gas desorption properties of these samples were enhanced by ScCO2, verifying the pore morphology results. A conceptual model was proposed to explain the mechanism of the desorption process in relation to the constricted pore spaces of the coal matrix under ScCO2 and higher-pressure conditions. The results contribute to the understanding of long-term CO2 storage and enhanced coalbed methane recovery.

Keywords:CARBON-DIOXIDE; TRANSPORT-PROPERTIES; ADSORPTION CAPACITY; GAS-TRANSPORT; PRESSURE; METHANE; TEMPERATURE; ISOTHERMS; STORAGE; SEAMS

https://doi.org/10.1021/acs.energyfuels.6b03225



关于作者

Wendy Huang editor

过去已过去,未来还未来。

目前为止有一条评论

bossliu发布于10:25 下午 - 10月 21, 2020

有几个问题提一下:没有作者信息;链接为文章的doi,不是文章的地址;第三,应选择精读论文的分类。

发表评论

Captcha Code